
Multi-vehicle simulation with ROS 2 and Gazebo

Alejandro Hernández
Cordero

June 2023

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

vehicle_gateway
● The goal of this project is to create a pluginlib-based C++ library that can interface with several

vehicle SDK's.

Vehicle_gateway overview
● The goal of this project is to create a pluginlib-based C++ library that can interface with several

vehicle SDK's.

vehicle_gateway
● The goal of this project is to create a pluginlib-based C++ library that can interface with several

vehicle SDK's.
● Download and install the required target to run Software In The Loop (SITL)

○ Betaflight (Experimental)
○ PX4

$> px4
$> px4-commander
$> betaflight_SITL.elf

vehicle_gateway
● The goal of this project is to create a pluginlib-based C++ library that can interface with several

vehicle SDK's.
● Download and install the required target to run SITL

○ Betaflight (Experimental)
○ PX4

● Download and install ground stations
○ QGroundControl
○ Betaflight configurator

vehicle_gateway
● The goal of this project is to create a pluginlib-based C++ library that can interface with several

vehicle SDK's.
● Download and install the required target to run SITL

○ Betaflight (Experimental)
○ PX4

● Download and install ground stations
○ QGroundControl
○ Betaflight configurator

● vehicle_gateway: A pluginlib-based system for interfacing to vehicle SDK's.
○ vehicle_gateway_betaflight: Betaflight plugin for the Vehicle Gateway.
○ vehicle_gateway_px4: PX4 plugin for the Vehicle Gateway.

vehicle_gateway
● vehicle_gateway is pure CPP without dependencies

○ ROS 2 Humble
● vehicle_gateway_betaflight

○ pluginlib
○ rclcpp
○ sensor_msgs
○ std_msgs

● vehicle_gateway_px4
○ pluginlib
○ rclcpp
○ px4_msgs
○ tf2
○ zenohc

vehicle_gateway

 pluginlib::ClassLoader<vehicle_gateway::VehicleGateway> loader;
 std::shared_ptr<vehicle_gateway::VehicleGateway> gateway;

 gateway_ = this->loader_.createSharedInstance(
 "vehicle_gateway_px4::VehicleGatewayPX4");
 gateway_->init(0, nullptr);
 gateway->arm()
 gateway->takeoff()
 // do stuff
 gateway->land()
 gateway->destroy()

vehicle_gateway

 /// Arm vehicle
 virtual void arm() = 0;

 /// Arm vehicle (blocking method)
 virtual void arm_sync() = 0;

 /// Disarm vehicle
 virtual void disarm() = 0;

 /// Disarm vehicle (blocking method)
 virtual void disarm_sync() = 0;

vehicle_gateway
 /// Get flight mode
 /// \return Flight mode
 virtual FLIGHT_MODE get_flight_mode() = 0;

 /// Get Vehicle type
 /// \return Vehicle type
 virtual VEHICLE_TYPE get_vehicle_type() = 0;

 /// Get VTOL state
 /// \return VTOL state
 virtual VTOL_STATE get_vtol_state() = 0;

 /// Takeoff the robot
 virtual void takeoff() = 0;

 /// Land the robot
 virtual void land() = 0;

vehicle_gateway

 /// VTOL
 /// Transition to fixed wings
 virtual void transition_to_fw() = 0;

 /// Transition to fixed wings (blocking method)
 virtual void transition_to_fw_sync() = 0;

 /// Transition to multicopter
 virtual void transition_to_mc() = 0;

 /// Transition to multicopter (blocking method)
 virtual void transition_to_mc_sync() = 0;

vehicle_gateway

 /// Get ground speed
 /// \return Get ground speed
 virtual float get_ground_speed() = 0;

 /// Get ground speed
 /// \return Get ground speed
 virtual float get_airspeed() = 0;

 /// Get altitude
 /// \return Get altitude
 virtual float get_altitude() = 0;

 /// Get 0: latitude, 1: longitude, and 2: altitude
 virtual std::vector<double> get_latlon() = 0;

 virtual void get_local_position(float & x, float & y, float & z) = 0;

vehicle_gateway

 virtual void go_to_latlon(double lat, double lon, float alt_amsl) = 0;

 virtual void go_to_latlon_sync(
 double lat, double lon, double alt,
 double latlon_threshold = 0.5, double alt_threshold = 0.5) = 0;

 virtual void set_local_position_setpoint(float x, float y, float z, float yaw) = 0;

 virtual void offboard_mode_go_to_local_setpoint_sync(
 double x, double y, double alt, double yaw, double airspeeed = 15.0,
 double distance_threshold = 10.0,
 vehicle_gateway::CONTROLLER_TYPE controller_type =
vehicle_gateway::CONTROLLER_TYPE::POSITION) = 0;

Python API
● Requirements

○ pybind11

Python API
● Requirements

○ pybind11
● Examples - vehicle_gateway_python

○ mc_to_fw_to_mc.py
○ mc_to_fw_to_offboard.py
○ position_control.py
○ test_takeoff_land.py
○ velocity_control.py
○ vtol_body_rates.py
○ vtol_position_control.py

Python API
● Requirements

○ pybind11

import vehicle_gateway

px4_gateway = vehicle_gateway.init(args=sys.argv, plugin_type='px4', vehicle_id=0)
px4_gateway.arm_sync()
px4_gateway.takeoff()
x, y, z = px4_gateway.get_local_position()
px4_gateway.land()
px4_gateway.disarm_sync()
px4_gateway.destroy()

vehicle_gateway
● The goal of this project is to create a pluginlib-based C++ library that can interface with several

vehicle SDK's.
● Download and install the required target to run SITL

○ Betaflight (Experimental)
○ PX4

● Download and install ground stations
○ QGroundControl
○ Betaflight configurator

● vehicle_gateway: A pluginlib-based system for interfacing to vehicle SDK's.
○ vehicle_gateway_betaflight: Betaflight plugin for the Vehicle Gateway.
○ vehicle_gateway_px4: PX4 plugin for the Vehicle Gateway.

● Python wrappers
○ pybind11

● end-to-end testing
● Simulation performance test

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

Simulation

Gazebo

● Physics
○ Accurate simulation with DART.
○ Plugin system for physics backend.

● Rendering
○ Ogre-Next 2.3 rendering engine (PBR).
○ Plugin system for rendering backend.

● Sensors
○ Rich camera system.
○ Extend with sensor plugins.

● Simulation Engine
○ Extend with system plugins.

● GUI
○ Custom GUI widgets as plugins.

● ROS / ROS 2 integration (ros_gz)

Aerial widgets in Gazebo
● Compass
● Attitude
● Generic plugins
● Improvements:

○ airspeed indicator?
○ takeoff/land/mode buttons?

Simulation
● Requirements

○ ROS 2 Humble
○ Gazebo Garden
○ ros_gz

● PX4
○ px4_sim

■ Launch single vehicle
■ Launch multi vehicle

● Betaflight
○ betaflight_sim

■ Launch single vehicle
■ Launch single vehicle with joystick

○ betaflight_gazebo (Gazebo plugin)
■ UDP connection with Betaflight - send RC commands

Launch files
● drone_id: set the vehicle ID, default=0
● drone_type: Sim Models (x500, standard_vtol, rc_cessna)
● dds_domain: Set DDS_DOMAIN_ID
● sensor_config: Sensor configuration from configs_px4 directory
● frame_name: Frame name included in the SDF world file
● groundcontrol: Start ground control station.
● world_name: World name (without .sdf)
● model_pose: Model pose (x, y, z, roll, pitch, yaw)

ros2 launch px4_sim px4_sim.launch.py drone_type:='x500' world_name:=null_island
model_pose:="-9.7948, -8.31, 2, 0, 0, 0"

vehicle_gateway_models
● Launch files include sensor_config parameter
● Extend models

○ X500
■ stock
■ camera

○ Standard VTOL
■ stock
■ camera

px4_sim

ROS 2
Launch

Launch
Gazebo

Spawn
Models

Launch
PX4

px4_sim

SDF/URDF

LiftDragPlugin
LiftDragPlugin

LiftDragPlugin

PX4

ROS 2
Launch

Launch
Gazebo

Spawn
Models

Launch
PX4

px4_sim

PX4
XRCE -

DDSDDSROS 2 MICRO-ROS-AGENT

/fmu/in/onboard_computer_status
/fmu/in/sensor_optical_flow
/fmu/in/vehicle_command
…
/fmu/out/timesync_status
/fmu/out/vehicle_attitude
/fmu/out/vehicle_control_mode
/fmu/out/vehicle_gps_position
…

betaflight_sim

SDF/URDF

LiftDragPlugin
LiftDragPlugin

LiftDragPlugin

Betaflight

ROS 2
Launch

Launch
Gazebo

Spawn
Models

Launch
Betaflight

betaflight_sim

betaflight

ROS 2

/global_position/rel_alt
/imu/data_raw
/imu/mag
/joy
/joy/set_feedback
/motors_out

vehicle_gateway_betaflight

betaflight_gazebo_plugin UDP

Motor out

RC in

Vehicle_gateway_betaflight (demo)
●

● MC takeoff
● MC hover over pad
● FW transition
● FW loiter
● FW offboard position

○ fly to north waypoint
○ change speed
○ fly to south waypoint
○ fly thome

● FW loiter
● MC transition
● MC hover over pad
● MC land

Offboard position control

● MC takeoff
● MC hover over pad
● FW transition
● FW loiter
● FW offboard CTBR

○ fly to north waypoint
○ change speed
○ fly to south waypoint
○ fly thome

● FW loiter
● MC transition
● MC hover over pad
● MC land

Offboard body-rate and thrust control

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

● End to end testing
● Gazebo headless mode

Testing - vehicle_gateway_integration_test

 if 'SHOW_GZ_GUI' in os.environ and os.environ['SHOW_GZ_GUI']:
 gz_gui_args = ''
 else:
 gz_gui_args = '--headless-rendering -s'
 gz_args = f'{gz_gui_args} -r -v 4 empty_px4_world.sdf'

 included_launch = IncludeLaunchDescription(
 PythonLaunchDescriptionSource(
 [os.path.join(get_package_share_directory('ros_gz_sim'),
 'launch', 'gz_sim.launch.py')]),
 launch_arguments=[('gz_args', [gz_args])]
)

● End to end testing
● Gazebo headless mode
● Python script with the test

○ arm/disarm
○ takeoff/land

● Check outputs

● Check exit codes

Testing - vehicle_gateway_integration_test

proc_output.assertWaitFor('Ready for takeoff!', process=run_px4,
 timeout=100, stream='stdout')

launch_testing.asserts.assertExitCodes(proc_info, process=run_px4,
 allowable_exit_codes=[0])

Testing

ROS 2 test
Launch

Launch
Gazebo

Spawn
Models

Launch
PX4

launch_testing

Testing

ROS 2
Launch

Launch
Gazebo

Spawn
Models

Launch
PX4

launch_testing

SDF/URDF

LiftDragPlugin
LiftDragPlugin

LiftDragPlugin

PX4

Testing

ROS 2 test
Launch

launch_testing

PX4

Python Script test

- Wait for outputs
- Wait for exist codes
- Kill all processes

XRCE -
DDSDDSROS 2 MICRO-ROS-AGENT

● Collect CPU and memory system usage
● Collect Gazebo real time factor (RTF)
● Run multidrone simulation

○ Same DDS domain
○ Different DDS domain

● Script to plot data

Simulation - performance tests

● CPU versus # vehicles and RTF vs # vehicles. Physics thread is 100%
● Note this is physics-bound; RTF decreases with more vehicles

Simulation - performance tests

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

● PX4 only:
○ Quads
○ Fixed wing planes
○ VTOLs

● Spawn robot and generate namespaced topics/services
● YAML file to configure your simulation

multirobot

- vehicle_id: 1
 frame_name: pad_1
 vehicle_type: x500
 sensor_config: stock
 model_pose: ""
 dds_domain_id: 1
- vehicle_id: 2
 frame_name: pad_2
 vehicle_type: standard_vtol
 sensor_config: stock
 model_pose: ""
 dds_domain_id: 2

● PX4 only:
○ Quads
○ Fixed wing planes
○ VTOLs

● Spawn robot and generate namespaced topics/services
● YAML file to configure your simulation
● Launch file

multirobot

export MULTIROBOT_CONFIG=<path_to_config_file>/multirobot_config.yaml
ros2 launch px4_sim px4_sim_multi.launch.py

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

World

● several helipads
○ future formation flight, etc

● one runway
● (0, 0) lat/lon

○ avoid confidential data
● sand material 🏝
● wave-effect shader ✨
● What’s next?

○ Boats ?
○ Rovers ?

ros2 launch px4_sim px4_sim.launch.py drone_type:=x500 world_name:=null_island frame_name:=pad_2

Cool video of N standard_vtol on Null Island

● Take off from adjacent slots on the Null Island runway, to show that world can
be used for large formation takeoffs/landings

● climb to a few meters
● land

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

Using Zenoh as a scalable backplane

Drone 1
ROS_DOMAIN_ID=1
ROS_LOCALHOST_ONLY=1

Drone 2
ROS_DOMAIN_ID=2
ROS_LOCALHOST_ONLY=1

Drone N
ROS_DOMAIN_ID=N
ROS_LOCALHOST_ONLY=1

Zenoh router process running at known host:port
(provides dynamic discovery via gossip protocol, and optionally data routing)

QGroundControl

Zenoh
(telemetry @ 2 Hz)

Ground computer(s)

Zenoh
(telemetry @ 2 Hz)

Zenoh
(telemetry @ 2 Hz)

Onboard companion
computers and PX4
microcontrollers

MAVLink
Telemetry and Ops

MAVLink
Telemetry and Ops

MAVLink
Telemetry and Ops

Zenoh demo

- Sending 2Hz
- Data (encoded as JSON for ease of future expansion)

- Vehicle id
- position
- airspeed
- heading

- Zenoh key: /vehicle_gateway/<vehicle_id>/state
- More details in the package README.md

Demo

https://docs.google.com/file/d/1I9qrVWcWEaAs9m84wVaghJ4FUORW5EfG/preview?resourcekey=0-NzsvGMya1kQzk5JyPj1qsw

● vehicle_gateway
● Simulation
● Testing
● Multirobot
● Demo world
● zenoh
● Conclusions

Index

Conclusions
Status

● Support quads, fixed wing planes and VTOLs
● Multirobot
● End to end testing in CI

Future work:
● Add support for others autopilots

○ Ardupilot, cleanflight, etc

Feedback:
● We invite everyone to try it and test it! We are happy to receive your feedback and contributions

Thank you!

