Virtual Reality (VR) Interface for Robot Teleoperationsupervisors:and Environment Visualisation

Dr Alan Millard Dr Alena Denisova

Author: Alistair Foggin

Computer Science University of York

1. Motivation

Reasons for a Virtual Reality teleoperation interface

- Enable immersive teleoperation of robots in challenging environments
- Reduce mental load of understanding sensor data
- Implement an interface that matches human mental models

2. Design/Development Process

Phases and steps followed in developing the interface

Data Collection

- Surveyed 13 robotics researchers on their work needs
- Extracted survey results into key points and themes
- Analysed results to identify related responses, tools, capabilities, and challenges using an affinity diagram
- Created personas and scenarios from responses

Design

- Researched capabilities of tools mentioned in the survey
- Identified user and system requirements based on survey results

4. System Overview

*SLAM Toolbox can be swapped out for Cartographer **Gazebo is only necessary when simulating the Turtlebot3

5. Interface Implementation

- Followed Virtual Reality usability guidelines
- Brainstormed and sketched possible interface layouts

Development

- Started prototyping the interface
- Asked volunteers to test the prototype
- Iterated on prototype based on feedback

Virtual Environment

- Virtual Cockpit
- Teleoperation Dashboard
- UI Control Panels

Visualisation

- 3D SLAM Map
- Lidar
- Camera

Teleoperation

- Point and Click Navigation
- Joystick Directional Controls

0 2 4 6 8 10 12 Number of Responses (Some overlap exists)		
Existing Tools and Sensors		
Visualisation and Control	Simulation	Sensors
 RViz Foxglove Unity Formant 	 Gazebo CoppeliaSim Argos Unity MATLAB 	 LiDAR IMU Camera Stereo Camera IR

6. Closing Evaluation

Details about challenges encountered and work to be expanded upon

Challenges in Development

- Network Bandwidth
- Limitations of Unity-ROS Integration
- Ensuring consistent high framerate in VR

Potential Future Work

- Improve map gesture controls
- Add more sensor visualisations
- Dynamically integrate with different robots using URDF
- Switch between multiple robots at runtime

ajf582@york.ac.uk https://uk.linkedin.com/in/alistair-foggin https://github.com/alistairfoggin/YorRobotsVR

Funded by YorRobots Venables Internship