
2023-09 ROS 2 RMW alternate
Abstract.. 1
User Challenges with DDS..2

DDS has a fully-connected graph of participants...2
DDS uses UDP multicast for discovery... 3
DDS can have difficulty transferring large data... 3
DDS can struggle on some WiFi networks.. 4
DDS tends to have complex tuning parameters.. 4
Vendor specific non-standard DDS extensions... 4
Next Steps... 5

Requirements gathering... 5
User Survey... 5

Demographics..6
Technical Data... 6
Alternative middleware options.. 8

Requirements.. 9
Comparative analysis of currently available middlewares.. 11

Complete list of investigated middlewares... 11
Performance.. 13

Middlewares X Requirements..13
Conclusion... 14
Appendix A...15

Abstract
The ROS MiddleWare interface (RMW) is an abstraction layer that allows ROS 2 to swap out its
underlying communication mechanism (middleware) at both compile time and runtime. All
current Tier 1 implementations of RMW are based on DDS. At the time that this solution was
chosen, it met many of the initial requirements.

Over the last 8 years of use, based on user feedback a number of problems have been
identified, including:

1. The RMW interface is meant to be generic, but because all the Tier 1 implementations
are DDS, details about DDS can leak through the interface.

https://docs.ros.org/en/rolling/Concepts/Intermediate/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/rolling/How-To-Guides/Working-with-multiple-RMW-implementations.html

2. DDS has a fully-connected graph of participants, which limits the number of network
entities in the system.

3. DDS discovery relies on multicast UDP by default. Many deployment environments do
not support multicast UDP, or limit how much of the network can be reached, leading to
silent discovery failures. While individual robots often use a single LAN, there are many
domains of robotics that need more scaling.

4. DDS can struggle with large messages (images, point clouds, etc.) that are fundamental
to many robot software systems.

5. DDS can have difficulty on WiFi networks, particularly when UDP multicast is disabled or
network connectivity is spotty. This is a problem since WiFi is required in many robotics
domains.

6. DDS can be complex to configure for non-ideal networks.

The previous issues can be addressed, in whole or in part, by expert configuration of DDS
and/or vendor-specific extensions to the DDS standard. However, many in the ROS user
community believe that an alternate middleware option that "just works" for many robotics
applications is worthwhile, even if some corner cases or particular applications are not
addressed. For demanding applications, DDS will always exist, and expert tuning will provide
the necessary flexibility. For the rest, improving the "out of the box" experience while meeting
the system requirements is the guiding design criterion.

This paper will present the challenges of the current system, then derive and propose a set of
requirements that a middleware must meet in order to be considered for a new RMW. It will
investigate currently available middlewares, and evaluate them against the requirements. The
conclusion will identify a single option that the ROS 2 core team will develop into a non-DDS
RMW to demonstrate the feasibility.

User Challenges with DDS
ROS 2 has used DDS as the middleware since the beginning of ROS 2 development around
2015. DDS was chosen because it addressed many of the same goals as ROS, and it had a
long history of large-scale, mission-critical deployments across a variety of industries.

Thus, the ROS 2 community has 8 years of experience using DDS as the middleware. In that
time, a number of issues have emerged as consistent sources of difficulty:

DDS has a fully-connected graph of participants

The graph of "DDS participants" refers to the ROS nodes, publishers, subscribers, service
clients, and service servers in the network. In ROS 1, the full graph was only known by
roscore; individual nodes only received the graph edges necessary to establish their

https://design.ros2.org/articles/ros_on_dds.html

connections. As a result, ROS programs tend to create many topics and services, and expect
that unconnected topics and services are inexpensive in terms of CPU usage, memory usage,
and network usage.

However, by design DDS creates and maintains a fully connected graph. All participants,
topics, and services in the network must be discovered by all other participants. This causes an
n2amount of network traffic for discovery, and "packet storms" when new participants enter large
networks. In contrast to ROS 1, the creation of new topics in the network is relatively expensive,
which limits the number of nodes and topics in the network. The problem becomes worse as
the network size grows, leading to frustration as roboticists move beyond toy examples and
attempt to scale their systems. There are ways to work around this limitation by multiplexing
data over a smaller number of topics or by using a discovery server to act as a central discovery
service, but a fully-distributed graph is inherent to the design of DDS.

DDS uses UDP multicast for discovery

By default, DDS relies on UDP multicast for discovery. This means that nodes can discover
each other without having a centralized discovery service like ROS 1. The idea is appealing; it's
one less process to manage. However, this approach is not always viable, because not all
networks have UDP multicast enabled.

Many institutionally-managed networks disable multicast UDP for security reasons, or to prevent
accidental "network flooding" by misconfigured applications. In addition, large WiFi networks
often disable multicast by default for performance reasons, because there is no physical
"multicast" in modern WiFi connections and the behavior must be emulated by the wireless
controller. Further, even for networks that do have UDP multicast enabled, the network
segments that UDP multicast can traverse is often limited. This means that it can be difficult to
configure DDS discovery to work across complex network setups.

The lack of multicast can be worked around by reconfiguring the network to support multicast in
a particular subnet, or by configuring DDS to use a predefined list of peers, or by using a
discovery service. However, the failure mode is "silent": participants simply don't find each other.
This is challenging for new and experienced users alike, and requires them to learn a
considerable amount about DDS discovery and multicast UDP.

DDS can have difficulty transferring large data

According to the standard, DDS uses UDP as the default underlying network protocol for packet
delivery. This has some advantages, in that it allows DDS to have total control of many aspects
of message delivery (also referred to as “Quality of Service”). This means, for instance, that
users can configure certain messages to be best-effort while other ones are reliable.

https://www.omg.org/spec/DDSI-RTPS/2.5/PDF

However, UDP is not nearly as ubiquitous or well-tuned as TCP in modern computing. Because
most computing applications are TCP-based, enormous effort has been spent at all levels of the
technology stack to optimize TCP performance, including operating system kernels and network
stacks, chipset accelerators, network switches, and routers at both LAN and WAN scales. In
contrast, UDP requires careful application-specific configuration. The Linux kernel, in particular,
has very small default buffer sizes for UDP (typically around 256 KB). Many DDS
implementations also request small UDP buffers by default. This is insufficient for the range of
message sizes that are seen in robotics applications: for example, when trying to transfer large
images or point clouds with DDS, the kernel and userland UDP buffers can fill up. This is
particularly problematic on WiFi networks where the connection may be unreliable. In that
scenario, a chunk of data may be retransmitted over and over, but not have enough space in the
receiving system’s UDP buffers. This issue can be worked around by configuring the DDS layer
to ask for larger buffer sizes and tuning the kernel UDP buffer sizes. However, this requires
users to learn the nuances of configuring systems for demanding UDP applications, and
sometimes to use low-level network diagnostic tools such as Wireshark.

DDS can struggle on some WiFi networks

In general, making DDS work on WiFi can be challenging. If the WiFi network allows UDP
multicast, and the connection tends to be good, DDS will operate fairly well. But if either of
those conditions is not true, DDS can struggle to deliver data. Since ROS 2 is very often used
on mobile robots and on laptops used for debugging, it is imperative that it works well “out of the
box” for as many networks as possible.

DDS tends to have complex tuning parameters

As mentioned in several of the items above, it is often possible to tune DDS to work in a variety
of environments. The various DDS implementations have many configuration points. But it can
be overwhelming for users, especially new users, to figure out which tuning parameters they
need and for which reason. This leads to user frustration since the tuning parameters that work
in one network may not work well for another one. This could be mitigated with more
documentation or by exposing more of the tuning parameters from ROS itself. However, that is
moving the complexity around rather than addressing it directly. ROS 1 users have come to
expect a minimal amount of configuration and maintenance burden; tuning complex network
parameters is unfamiliar to most ROS users.

Vendor specific non-standard DDS extensions
As mentioned above, many DDS vendors have developed custom extensions and tools which
can be used to work around some of the challenges identified above. These vendor-specific
tools are outside the DDS standard, add more complexity for the end user, and potential
differences between vendor-specific implementations must be learned (for example, several

vendors offer a DDS discovery service). Additionally, some of these tools are proprietary, which
means that they create vendor lock-in and cannot be used in an open-source framework like
ROS 2.

Next Steps

The DDS stack works well when it is carefully tuned and operated on a well-managed
network, as evidenced by the successful use of ROS 2 in mission-critical systems around
the world. The issues described in the previous sections are surmountable in any particular
deployment, but they often require expert application-specific DDS configuration.

Given the problems identified above, and the availability of several new middlewares since
2015, now is a good time to explore other options. The main goal is to create an RMW
alternative that has a great “out of the box” experience for users, while still retaining the DDS
middleware for those with specific needs in demanding applications. The RMW interface will
allow ROS 2 to support both the existing DDS middlewares, as well as a new alternate
"general-purpose" middleware.

Requirements gathering

The core team gathered a list of requirements for the ROS 2 transport/middleware. These
requirements came from three key sources: known use cases of ROS 2, targeted interviews
with key stakeholders in the ROS 2 community, and a user survey sent out to the ROS 2
community at large.

User Survey
On July 31, 2023, the ROS 2 core team sent a discourse post stating the intention to create an
alternative RMW implementation, and asking the community for feedback in the form of a
survey.

The survey consisted of a number of questions that aimed to determine how people are using
ROS 2, the networks that are in use, issues faced while using ROS 2, and alternative
middlewares to explore. Over 180 community responses were recorded from that survey. For
the sake of brevity, not all questions asked on the survey will be discussed here; the entire
anonymous survey results are available here.

https://discourse.ros.org/t/investigation-into-alternative-middleware-solutions/32642
https://docs.google.com/forms/d/1GWb7RrSPkvdgl49LMrsTyoAy3i29LO6AuFSIUzsuwrs/viewanalytics

Demographics

The majority of the respondents were from small businesses, with a pretty even mix of large
businesses, medium businesses, and research organizations making up most of the rest.

Technical Data

Almost half of the respondents have small fleets of robots, less than 10. Exactly half of the
respondents have between 10 and 1000 robots, with a few respondents having much larger
fleets.

The typical number of topics is dominated by the range 20-200, with a significant portion above
200.

The vast majority of the respondents use Docker or Podman for their robots.

There is no one clear dominant networking topology. Respondents reported things ranging from
localhost-only to the cell network to WiFi to VPNs.

Alternative middleware options

The survey included a free-form field to suggest middlewares that should be investigated. Since
this was free-form, respondents were free to cite as many as they wanted, and thus the data
below contains more responses than the number of respondents.

Zenoh was the alternative most suggested by users, though there was substantial support for
TCPROS, MQTT, and ZeroMQ.

Requirements
Based on the above requirements gathering, a list of requirements was produced. In the list
below, the standard RFC 2119 terminology of “Must”, “Should”, and “May” is used.

Requirement Level Notes

Pub/Sub Must

It is expected that peer-to-peer comms is necessary for performance, but
everything is on the table. (As an alternative, for example, could have an
MQTT router on every host and shared-memory within each host)

Security - Encryption Must For example, TLS.

Security -
Authentication Must

For example, peers use certificates during connection that were
generated by some application-specific certificate-authority.

Security - Access
Control Must

Exact definitions may vary, but the requirement is for per-identity access
control that is more granular than just a global allow/deny. As in, identity
A may publish on topic B but not on topic C.

Gracefully handle
disconnect/reconnect Must

WiFi. Need graceful, fast recovery of pub/sub/services when connection
is re-established.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

of the network

Tolerance to
bandwidth changes Must

WiFi connections can dynamically change bandwidth by order(s) of
magnitude.

Configure which
interface to use Must

Plenty of scenarios need to use a specific network interface (virtual
networks, routing).

Ability to send
multi-megabyte
messages Must

Need to send images, pointclouds, etc., usually < 30 Hz for the "heavy"
sensors, with reasonable CPU usage especially on lossy networks.

Ability to send fast
small messages Must

Things like robot state updates from real-time subsystems, say 1 kHz,
<1 kB messages.

Restart discovery
without restarting all
nodes Must

For safety critical scenarios, there can't be a single point of failure that
requires a full reboot.

Cross Platform
support Must

The middleware must be supported on the ROS 2 Tier 1 target
platforms: Ubuntu Linux amd64 and arm64, and Windows.

OSI approved
permissive license Must

The middleware must use an OSI approved license, and the license
must be permissive (not copyleft-style).

Built-in Discovery Should
The discovery system can be either built-in or added outside the pub/sub
middleware, if enough hooks are present to allow this.

Routing across
subnets Should

It's common to have subnets onboard robots, and offboard subnets for
debugging or heavy processing. If an option doesn't have this, then
something additional needs to provide this (probably a TCP stream).

Shared memory
(intra-host) Should

Some common robotics pub/sub needs (camera images, point clouds)
are gigabit+ per second, and with "heavy" usage of USB3 and 10G
sensors, sensor bandwidth requirements keep growing.

Peer-to-peer data
connections Should

A brokered-like network tends to amplify the amount of network
bandwidth needed, as well as increase latency.

RPC May
If a middleware doesn't have built-in async RPC, another solution needs
to be found to implement it.

Protocol debugging
tooling (CLI, GUI,
Wireshark plugins,
etc) May Ability to debug the network protocol.

Prioritization of
message streams
(small high-priority
messages can
interrupt large
lower-priority
messages) May

Want to be able to express that some streams are more important (for
example, joystick teleop commands), when bandwidth is insufficient for
everything.

Control over reliability
QoS May

In some scenarios (e.g., sensors) the most recent message is more
important than getting all messages.

Control over QoS
history May

Need to gracefully configure what to do with slow subscribers or slow
networks.

Control for "latching" May
ROS 2 graphs often have late-joining subscribers, so there needs to be
some way for publishers to "remember" past data to deliver to them.

Ability to configure
static peers May In a large network, may only want to do discovery with certain peers.

Comparative analysis of currently available
middlewares

Besides the requirements, the ROS 2 core team examined currently available middleware
alternatives.

Complete list of investigated middlewares

Here is the complete list of investigated middlewares, with some minimal information about each
one:

Name License Existing RMW implementation?

Eclipse Cyclone DDS Eclipse Public License 2.0 https://github.com/ros2/rmw_cyclonedds/

eProsima Fast DDS Apache 2.0 https://github.com/ros2/rmw_fastrtps

RTI Connext Proprietary https://github.com/ros2/rmw_connextdds

Gurum DDS Proprietary https://github.com/ros2/rmw_gurumdds

Open DDS

OpenDDS license - Open
source-ish, but not OSI
approved https://github.com/OpenDDS/rmw_opendds

https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/ros2/rmw_cyclonedds/
https://github.com/eProsima/Fast-DDS
https://github.com/ros2/rmw_fastrtps
https://www.rti.com/products
https://github.com/ros2/rmw_connextdds
https://www.gurum.cc/gurumdds_eng
https://github.com/ros2/rmw_gurumdds
https://opendds.org/
https://github.com/OpenDDS/rmw_opendds

Zenoh
Apache 2.0 and Eclipse
Public License 2.0 https://github.com/atolab/rmw_zenoh

Zenoh-Pico Apache 2.0

MQTT

Implementation
dependent, see the
wikipedia article

ZeroMQ MPL 2.0

nanomsg BSD-ish

nng MIT

LCM LGPL

IceOryx Apache 2.0 https://github.com/ros2/rmw_iceoryx/

OPC-UA

An MIT-GPLv2-RCL
combination
See OPC Licenses

Open-source
implementation in C:
https://github.com/open62
541/open62541

C++ impl:
https://github.com/FreeOp
cUa/freeopcua

eCal Apache 2.0 https://github.com/eclipse-ecal/rmw_ecal

ROS 1 BSD / Apache

Kafka Apache 2.0

GRPC Apache 2.0

Websockets
Implementation
dependent

Subspace Apache 2.0

XMLRPC
Implementation
dependent

CAN bus
Implementation
dependent

https://zenoh.io/
https://github.com/atolab/rmw_zenoh
https://github.com/eclipse-zenoh/zenoh-pico
https://mqtt.org/
https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations
https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations
https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations
https://zeromq.org/
https://github.com/nanomsg/nanomsg
https://github.com/nanomsg/nng
http://lcm-proj.github.io/lcm/
https://github.com/eclipse-iceoryx/iceoryx
https://github.com/ros2/rmw_iceoryx/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/license-agreement/
https://github.com/open62541/open62541
https://github.com/open62541/open62541
https://github.com/open62541/open62541
https://github.com/open62541/open62541
https://github.com/FreeOpcUa/freeopcua
https://github.com/FreeOpcUa/freeopcua
https://github.com/FreeOpcUa/freeopcua
https://eclipse-ecal.github.io/ecal/
https://github.com/eclipse-ecal/rmw_ecal
http://wiki.ros.org/ROS/TCPROS
https://kafka.apache.org/
https://grpc.io/
https://en.wikipedia.org/wiki/WebSocket
https://github.com/dallison/subspace
http://xmlrpc.com/
https://en.wikipedia.org/wiki/CAN_bus

YAMI4 GPLv3

SNMP
Implementation
dependent

Mavlink LGPLv3

Cyphal (libcanard) MIT

Performance
Detailed networking performance was a deliberate omission from the research into available
middlewares. Previous experience with performance testing (from the Galactic and Humble
middleware selection) has shown that it is extremely time-intensive, and can only give gross
differences in performance. The configuration of the machines under test, the network, and the
configuration of the middleware play a huge role in determining the fine differences in
performance. In ideal conditions, all of the further investigated options are capable of saturating
a gigabit network link; the differences primarily rest in ease of middleware configuration for
performance across a wide range of applications.

Third parties have performed detailed performance analyses of some of the middlewares:

● Zenoh vs MQTT vs Kafka vs DDS
● Fast-DDS vs CycloneDDS
● Fast-DDS vs ZeroMQ
● Kafka vs ActiveMQ vs RabbitMQ

While the data in the above analyses don’t objectively prove the performance, they are a
representative sample of why performance testing is difficult to do.

Middlewares X Requirements

From the complete list of middlewares above, a subset that seemed most promising was
examined in more detail. In particular, each of the middlewares in that subset were compared
against the list of requirements presented in the earlier section.

The resulting spreadsheet is in Appendix A, or is available in an easier-to-read format at
https://docs.google.com/spreadsheets/d/18SgD-aFJAiDus5cYMN-ya9greOgXq-ErVEsWuV40Kj
w/edit#gid=1189402529. Note that the columns are in alphabetical order.

Some key takeaways of the spreadsheet:

http://www.inspirel.com/yami4/
https://en.wikipedia.org/wiki/Simple_Network_Management_Protocol
https://mavlink.io/en/
https://opencyphal.org/
https://osrf.github.io/TSC-RMW-Reports/galactic/
https://osrf.github.io/TSC-RMW-Reports/humble/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://eprosima.com/index.php/resources-all/performance/fast-dds-vs-cyclone-dds-performance
https://eprosima.com/index.php/resources-all/performance/zmq-vs-eprosima-fast-rtps
https://digitalscholarship.unlv.edu/cgi/viewcontent.cgi?article=4749&context=thesesdissertations
https://docs.google.com/spreadsheets/d/18SgD-aFJAiDus5cYMN-ya9greOgXq-ErVEsWuV40Kjw/edit#gid=1189402529
https://docs.google.com/spreadsheets/d/18SgD-aFJAiDus5cYMN-ya9greOgXq-ErVEsWuV40Kjw/edit#gid=1189402529

● Zenoh meets most of the requirements. For those requirements it does not currently
meet, either a feature is in development, or can be developed using existing
mechanisms.

● TCPROS is the underlying communication mechanism in ROS 1. Since it was
specifically designed to meet the requirements of a robotic application, it too meets most
of the current requirements.

● MQTT meets a number of the requirements, and is heavily used in the IoT world. The
size limitation on messages, along with the fact that it is fully brokered, doesn’t seem to
fit the ROS use case very well.

● ZeroMQ (and its grandchild, nng) meets a number of requirements, and is in active use
by Gazebo. Because ZeroMQ is more of a “toolbox” of networking primitives, it would
require significant additional development to create a fully-featured middleware.

● OPC-UA meets a number of requirements, but is brokered architecture and doesn’t have
discovery by default.

● DDS is currently being used by ROS 2, and it meets most of the requirements, though
with the problems pointed out earlier in this paper.

● Kafka is an interesting and widely used message service, but is fairly complex and the
messaging model doesn’t directly map to ROS.

Conclusion
Requirements from ROS 2 users were gathered, and middleware options that are available
today were investigated. The research has concluded that Zenoh best meets the requirements,
and will be chosen as an alternative middleware. Zenoh was also the most-recommended
alternative by users. It can be viewed as a modern version of the TCPROS implementation,
and meets most of the ROS 2 requirements. There are still a number of design decisions to be
made regarding this implementation; those details will be discussed on https://discourse.ros.org
as development begins.

https://discourse.ros.org

Appendix A

Requirements Middleware Options

Item Level Cyphal DDS eCal Kafka LCM MQTT NNG OPC-UA TCPROS Zenoh ZeroMQ

Pub/Sub Must Yes Yes Yes Yes Yes Yes Yes

Yes but
requires a
special
broker

Yes Yes Yes

Security -
Encryptio

n
Must No Yes No

Yes
https://kaf
ka.apach
e.org/doc
umentatio
n/#securit

y

No Yes, TLS Yes, TLS Yes Via SROS Yes,
TLS

Not in the
default, but
CurveMQ
builds on
top to

provide it

Security -
Authentic
ation

Must No Yes No Yes No Yes Yes Yes Via SROS Yes

Not in the
default, but
CurveMQ
builds on
top to

provide it

Security -
Access
Control

Must No Yes No Yes No Yes No Yes Via SROS

No,
planned
for later
this
year

No, but
can be

implement
ed on top

https://datatracker.ietf.org/doc/html/rfc2119
https://opencyphal.org/
https://www.dds-foundation.org/
https://github.com/eclipse-ecal/ecal
https://kafka.apache.org/intro
http://lcm-proj.github.io/lcm/
https://mqtt.org/
https://github.com/nanomsg/nng
http://wiki.ros.org/ROS/TCPROS
https://zenoh.io/
https://zguide.zeromq.org/docs/chapter1/
https://forum.opencyphal.org/t/cyphal-auth-food-for-thought/1847
https://kafka.apache.org/documentation/#security
https://kafka.apache.org/documentation/#security
https://kafka.apache.org/documentation/#security
https://kafka.apache.org/documentation/#security
https://kafka.apache.org/documentation/#security
https://kafka.apache.org/documentation/#security
https://kafka.apache.org/documentation/#security
https://zenoh.io/docs/manual/user-password/
https://mosquitto.org/man/mosquitto-conf-5.html
https://github.com/orgs/eclipse-zenoh/projects/2/views/4
https://github.com/orgs/eclipse-zenoh/projects/2/views/4
https://github.com/orgs/eclipse-zenoh/projects/2/views/4
https://github.com/orgs/eclipse-zenoh/projects/2/views/4
https://github.com/orgs/eclipse-zenoh/projects/2/views/4

Gracefully
handle
disconne
ct/reconn
ect of the
network

Must Yes

Borderlin
e; in UDP
mode,
packets
may be
dropped.
If the

connectio
n is

reliable,
data will
be resent,
but may

be
fragment
ed and

subject to
kernel
limits. In
best-effort
mode,
data will

be
dropped.

Borderlin
e; in UDP
mode
(the

default),
packets
will be

dropped.
In TCP
mode, it
will

handle
this

better, but
this is not

the
default

Yes.
Handles
failures
well too
https://kaf
ka.apach
e.org/doc
umentatio
n/#basic_
ops_resta

rting

Yes
(connecti
vity will
recover)

Yes Yes Yes Yes Yes Yes

Tolerance
to

bandwidt
h

changes

Must Unclear

Borderlin
e: without

flow
controller
s, can
struggle
to send
data if the

link
degrades.

Borderlin
e; in UDP
mode
(the

default),
packets
will be

dropped.
In TCP
mode, it

Yes. Esp
due to

writing to
disk

No
built-in
flow

control

Nothing
on top of
what TCP
offers

Nothing
on top of
what TCP
offers

Nothing
on top of
what TCP
offers

Nothing on
top of what
TCP offers

Yes TCP

https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://zenoh.io/blog/2021-06-14-zenoh-reliability/

will
handle
this

better, but
this is not

the
default

Configure
which

interface
to use

Must Yes (IP
address) Yes

Yes (via
standard
Linux

configurat
ion)

Yes Yes

Yes,
implemen
tation

dependan
t:

See
mosquitto

No, there
doesn't
seem

to be an
API to
indicate
interface

Yes

Indirectly
through the
routing
table

Yes,
configur
ation

variable

Yes (both
tcp and

udp during
zmq_bind(

))

Ability to
send

multi-meg
abyte

message
s

Must

Yes (with
UDP

transport
options)

Borderlin
e; in UDP
mode,
packets
are

heavily
fragment
ed and
sent.

Without
configurin
g kernel
buffer
sizes,
very

possible
to lose
some
packets
along the

Yes, but
with

caveats
dependin
g on
which

transport
layer is in
use:

- SHM:
Yes

- UDP:
same

issues as
DDS
- TCP:
Yes

Yes Yes

To the
limit: 8mb
- 10hz

(from the
Zenoh
performa

nce
comparis
on at

https://ze
noh.io/blo
g/2023-0
3-21-zen
oh-vs-mqt
t-kafka-dd

s/)

Yes Yes Yes

Yes,
relying
on this
analysi

s

Should be
since TCP,

see
https://gith
ub.com/jeff
bass/imag
ezmq#why
-use-imag
ezmq

https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://github.com/eclipse-zenoh/zenoh-c/blob/e8812de5b3ddd453f434ccbf64679a80b3f73d60/include/zenoh_commons.h#L682
https://github.com/eclipse-zenoh/zenoh-c/blob/e8812de5b3ddd453f434ccbf64679a80b3f73d60/include/zenoh_commons.h#L682
https://github.com/eclipse-zenoh/zenoh-c/blob/e8812de5b3ddd453f434ccbf64679a80b3f73d60/include/zenoh_commons.h#L682
https://github.com/eclipse-zenoh/zenoh-c/blob/e8812de5b3ddd453f434ccbf64679a80b3f73d60/include/zenoh_commons.h#L682
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/)
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq
https://github.com/jeffbass/imagezmq#why-use-imagezmq

way and
thus have

to
retransmit
a bunch.

Ability to
send fast
small

message
s

Must

Yes (with
UDP

transport
option)

Yes

Borderlin
e;

particularl
y with the
SHM

transport
(default
for

localhost)
, if the

publisher
is running
faster
than the
subscribe
rs, data
will be
lost.

Yes.
Apparentl
y latency
of 2ms is
achievabl

e

Yes Yes Yes Maybe not Yes

Yes,
relying
on this
analysi

s

Yes

Restart
discovery
without
restarting
all nodes

Must

Yes since
the

channels
are

statically
configure

d.

Yes

Yes (UDP
multicast
discovery

)

Yes Yes Yes

N/A
(discover
y is not
builtin)

N/A No

Yes:
Discove

ry
happen
s when
a zenoh
session

is
created
in each
applicat

N/A

https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/
https://zenoh.io/blog/2023-03-21-zenoh-vs-mqtt-kafka-dds/

ion. It
looks
for
other
peers/r
outers.

Cross
platform
support

Must
Linux,

Windows,
macOS

Implemen
tation-spe

cific

Linux,
Windows,
macOS

Java, so
in theory
runs

anywhere
a JVM
does

Linux,
Windows,
macOS

Implemen
tation-spe

cific

Linux,
Windows,
macOS

Implement
ation-spec

ific

Linux,
Windows
(third-party
), macOS
(third-party

)

Linux,
Window

s,
macOS

Linux,
Windows,
macOS

OSI
approved
permissiv
e license

Must MIT
Implemen
tation-spe

cific

Apache
2.0

Apache
2.0 LGPL

Implemen
tation-spe

cific
MIT

Implement
ation-spec

ific
BSD

Apache
2.0 and
Eclipse
Public
License
2.0

MPL 2.0

Built-in
Discovery Should No Yes Yes (UDP

multicast) No

No
(pre-defin
ed UDP
mcast)

No (need
to provide
host:port
to every
client)

No
(though
survey
protocol
may be
able to do
this in the
future)

No Yes

Yes
(both
gossip
and
UDP
mcast)

No (need
to provide
host:ip to
connect to)

https://nng.nanomsg.org/man/tip/nng_respondent.7.html
https://nng.nanomsg.org/man/tip/nng_respondent.7.html
https://nng.nanomsg.org/man/tip/nng_respondent.7.html

Routing
across
subnets

Should No

Borderlin
e;

possible,
but

usually
fraught
with

problems
when
hitting

real-world
managed
networks,
(TTL,

multicast
UDP,
Wifi)

Challengi
ng by
default,
since
uses

multicast
UDP. Can
use TCP
to avoid
this.

Yes

Challengi
ng in

practice;
easy to
overload
switches
with
mcast
UDP

Yes, via
connecte
d brokers

No
Yes, as
TCP
allows.

Yes, as
TCP
allows.

Via a
zenoh
router

Yes,
provided
networks

are
bridged

Shared
memory
(intra-host

)

Should No

Yes
(impleme
ntation-sp
ecific, but
all current
DDS

vendors
have it)

Yes

Yes.
Msgs are
always
written to
pagecach
e then
disk

https://kaf
ka.apach
e.org/doc
umentatio
n/#design
_filesyste

m

No No Yes No No Experi
mental No

https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://kafka.apache.org/documentation/#design_filesystem
https://github.com/eclipse-zenoh/zenoh/issues/474
https://github.com/eclipse-zenoh/zenoh/issues/474

Peer-to-p
eer data
connectio

ns

Should Yes Yes Yes (UDP
multicast)

Not
directly.
But

possible
via

distribute
d brokers,
replicatio
n and
load

balancing
https://kaf
ka.apach
e.org/doc
umentatio
n/#intro_c
oncepts_
and_term

s
https://kaf
ka.apach
e.org/doc
umentatio
n/#design
_loadbala
ncing

Yes (UDP
multicast) No Yes Yes Yes Yes Yes

RPC May Yes Not
built-in

Yes
(TCP) Yes Not

built-in
Not

built-in

Yes, non
blocking
call

available

Yes Yes (sync) Yes
(async)

Yes,
http://zguid
e2.zeromq
.org/py:asy

ncsrv

https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#intro_concepts_and_terms
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://kafka.apache.org/documentation/#design_loadbalancing
https://github.com/nanomsg/nng/blob/6407267ad710ecf1bd3430207e42d3c581eaaf45/demo/reqrep/reqrep.c#L172C1-L173C1
https://github.com/nanomsg/nng/blob/6407267ad710ecf1bd3430207e42d3c581eaaf45/demo/reqrep/reqrep.c#L172C1-L173C1
https://github.com/nanomsg/nng/blob/6407267ad710ecf1bd3430207e42d3c581eaaf45/demo/reqrep/reqrep.c#L172C1-L173C1
https://github.com/nanomsg/nng/blob/6407267ad710ecf1bd3430207e42d3c581eaaf45/demo/reqrep/reqrep.c#L172C1-L173C1
https://reference.opcfoundation.org/Core/Part4/v104/docs/1
https://github.com/eclipse-zenoh/zenoh/blob/0fc9d75396e513fbb3937fe4a25df387ccd0a56b/examples/examples/z_get.rs#L40-L50
http://zguide2.zeromq.org/py:asyncsrv
http://zguide2.zeromq.org/py:asyncsrv
http://zguide2.zeromq.org/py:asyncsrv
http://zguide2.zeromq.org/py:asyncsrv
http://zguide2.zeromq.org/py:asyncsrv

Protocol
debuggin
g tooling
(CLI, GUI,
Wireshark
plugins,
etc)

May Yes

Yes
(impleme
ntation
specific)

Yes
(monitor,
recorder,
player)

Yes No

Yes
(impleme
ntation
specific)

No Yes Yes Yes

Not out of
the box.
But API
available.
http://api.z
eromq.org/
4-1:zmq-s
ocket-moni

tor

Prioritizati
on of

message
streams
(small

high-priori
ty

message
s can

interrupt
large

lower-prio
rity

message
s)

May Yes Yes No

Need to
implemen

t at
applicatio
n layer;
see this
blog post

No No No
Yes, using
ProrityLab
el values

No

Yes,
when
declarin
g a

publish
er a

priority
value is
used.
See

options
When
dealing
with
"large"
payload
s it

priotizie
s the

messag
es

carrying
the

splitted
payload

No

https://www.wireshark.org/docs/dfref/t/tcpros.html
https://zenoh.io/blog/2023-01-17-zenoh-wireshark/
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
http://api.zeromq.org/4-1:zmq-socket-monitor
https://www.confluent.io/blog/prioritize-messages-in-kafka/
https://www.confluent.io/blog/prioritize-messages-in-kafka/
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/publication/enum.Priority.html

so all
the
parts
are

recevie
d

earlier
in the
other
end.

Control
over

reliability
QoS

May No Yes

Yes, but
only
when
using
UDP
mode

Yes No Yes, see
here

No.
Quote:
"Applicati
ons that
require
reliable
delivery

semantics
should
consider
using

nng_req(
7)

sockets,
or

implemen
t their
own

acknowle
dgement
layer on
top of pair
sockets."

No No

Yes,
see

here for
reliabilit
y and
congest
ion

control

No,
guarantee
d once and
only once

https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://nng.nanomsg.org/man/v0.5.0/nng_pair.html
https://nng.nanomsg.org/man/v0.5.0/nng_pair.html
https://nng.nanomsg.org/man/v0.5.0/nng_req.html
https://nng.nanomsg.org/man/v0.5.0/nng_req.html
https://zenoh.io/blog/2021-06-14-zenoh-reliability/
https://zenoh.io/blog/2021-06-14-zenoh-reliability/

Control
over QoS
history

May No Yes Yes Yes No

Yes, in
the

broker
side

No If using
OPC HDA No

Yes,
there is

a
reliabilit
y queue

in
sender
and

receiver
.

When
full you
can

choose
to drop
messag
es or
block
sender/
receiver

.

Yes, you
can

configure
queue size

for a
socket

Control
for

"latching"
May Not

built-in Yes Not
built-in Yes Not

built-in Yes
Not

built-in
feature

Not built-in Yes Not
built-in Not built-in

Ability to
configure
static
peers

May No Yes

Yes (via
standard
Linux
tools)

Yes Yes Yes

Yes (no
discovery

is
provided)

Yes Yes

Yes,
discove
ry for a
session
can be
disable
d and a
list of
nodes
address

Yes, it's
the only
way

https://zenoh.io/blog/2021-06-14-zenoh-reliability/
https://zenoh.io/blog/2021-06-14-zenoh-reliability/
https://zenoh.io/blog/2021-06-14-zenoh-reliability/

es can
be

explicitl
y

submitt
ed. See
zenoh::
config

Legend:

Green -
Meets

requirem
ent

Yellow -
borderline
, or needs
work to
meet

requirem
ent

Red -
Show-sto
pper,
would
need

redesign

https://docs.rs/zenoh/0.7.2-rc/zenoh/prelude/struct.Config.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/prelude/struct.Config.html
https://docs.rs/zenoh/0.7.2-rc/zenoh/prelude/struct.Config.html

